
Paper ID #9206

Teaching Modern Object-Oriented Programming to the Blind: An Instructor
and Student Experience

Dr. Charles B. Owen, Michigan State University
Sarah Coburn, Michigan State University
Ms. Jordyn Castor

c©American Society for Engineering Education, 2014

Teaching Modern Object-Oriented Programming to the
Blind: An Instructor and Student Experience

Abstract

Blind computer science students face significant challenges in modern curricula. Computer
programming has seen extensive growth of visual tools and environments. Most end-user
development is for visual environments, from graphical user interfaces (GUIs) to web pages. The
tools of choice have become highly visual integrated development environments (IDE). Visual
modeling languages such as Unified Modeling Language (UML) are a major element of program
understanding and design. All of these tools and methods are problematic for a blind student.
This paper describes the challenges we faced as both the instructor and student as we adapted
tools, material, and assignments in an object-oriented programming course.

1 Introduction

In the fall of 2013, Jordyn, a co-author of this paper, enrolled in an intermediate-level course in
object-oriented programming and modern development methodologies. Jordyn is very unique in
Computer Science programs because she is blind.1 Jordyn is the first blind student I have had in a
course. Sadly, the experience has been that blind students have largely not proceeded beyond the
CS1 course in the past, so Jordyn is indeed unique. As we began to examine the course
requirements, we faced considerable challenges. This paper describes some of those challenges,
how we overcame them, where we still struggle, and how it was possible for her to succeed in
this course. Since we were able to solve many of the problems she faced in the course, we feel it
is important to share these solutions, so other students can also have the chance to succeed in
Computer Science programs.

It was a shock to discover how limited the tools are for blind students in Computer Science.
There have been projects aimed at attracting blind students and, indeed, it was one of those
programs that got Jordyn excited about the major.2 However, there have been fewer efforts to
provide support for students once they are in a curriculum. Several projects have created custom
languages that are designed for blind and limited-vision users, such as Quorum3 and Audio
Programming Language (APL).4 However, few projects have addressed the problem of students
succeeding in programs where they must use languages common in curricula, such as Java, C++,
and Python. Existing tools generally follow the pattern of adapting a visual tool such as
NetBeans or Eclipse by tacking on accessibility that speaks the visual elements of the interface.
Accessibility support in these tools is often incomplete and buggy. For example, Sodbeans
adapts some NetBeans components with accessibility, but does not adapt the debugger.5 Even
more problematic are visual development tools such as UML diagrams that have no obvious
textual equivalent. We have been able to create some simple system extensions to make
Sodbeans and GDB, the GNU project debugger we utilize in the course, work better together,

and we have developed textual, tactile, and audible representations of UML diagrams that are
accessible to a blind student.

This course represented a unique combination of an instructor who is an expert in multimedia
and user interfaces with a student who is highly motivated to learn and succeed. We were able to
work together throughout the semester, trying different approaches, learning what worked and
discarding what did not. As problems arose, we addressed them through adapting existing tools
when possible, creating smaller fixes, and creating new tools better adapted to her needs. We
have, in the process, learned a lot about how to make an effective aural interface.

2 Structure of the Course

The course is called Object-Oriented Programming and is meant to be the transition from simple
Python and C++ programs to larger systems, where system design is important and programs
span many classes. The course includes modern design methods and UML diagrams as an
important element. The course also introduces Design Patterns, utilizing many of these in
projects.6 There is an introduction to practical concurrency and multithreading.

The course has many structural elements. There are two lectures per week. During lectures,
students are given a worksheet referred to as a “ToeTipper” that they complete during class. This
allows students to gain experience solving problems in class and breaks up the lecture. There are
assignments referred to as “Step Assignments”. A step assignment is a combination of reading,
tutorial, code literacy, and individual tasks. There are two larger projects, a group project and an
individual project, though the individual project does include a group design component. There
are several additional “Design Assignments” that require students to solve a design problem and
submit UML diagrams. The design assignments are subject to an anonymous peer review
system.

The course is taught in the C++ programming language and students enter the course with one
previous course in that language. The assignments are all graphical user interface applications
using the wxWidgets class library.7 Visual Paradigm is used as a UML editor.8 NetBeans is used
as an integrated development environment. Students work on the Linux platform.

3 The Student

Jordyn became interested in computers as a career from an early age. She began using a
computer in the second grade and it was obvious to her and her family that technology would
play an important role in everyday life. While in the seventh grade, she attended the National
Federation of the Blind Youth Slam, where she wrote her first C# computer program, a chat bot
that could communicate through Windows Live messenger.2 The chat bot was able to perform
actions like checking the weather, looking up dictionary definitions, and playing Simon Says.
She realized she could program a computer, that the methods for instructing a computer were by

no means out of her reach, and became extremely interested in computer science. She hopes that
following that career path will enable her to help others with disabilities.

Jordyn completed the CS1 course in the Python programming language and the CS2 course in
C++ at Michigan State University. For those courses, she used the VIM editor.9 She considered
other options such as Emacspeak, but found them difficult to install and use. She uses screen
readers built into the OS-X operating system and Orca screen reader on Linux platforms.
Working with source code using a screen reader is challenging. Sighted users are able to scan
both content and structure on demand very quickly. The do not have to carry much of the design
in their head. Hearing is not directed, so she must use keyboard controls to move through code as
it is read by the screen reader. Compared to a sighted user, the process of directing focus is
considerably slower.

4 Challenges and Solutions

As we entered the semester, there was some concern about visual diagrams, but it was assumed
that other tools would be sufficient for the course. A version of NetBeans, the IDE the course
uses, had already been adapted for blind users, and most tools in the Linux world have command
line versions. Adapting graphical material is a task that the Resource Center for Persons with
Disabilities (RCPD) had considerable experience with and they had converted diagrams in math
courses in the past. However, it was quickly clear that most of these problems were much farther
from being solved than we assumed.

4.1 Available Tools

The student used Vinux running under a VMware virtual machine on a MacBook Pro running
OS-X Mavericks. Vinux is an Ubuntu-derived variation of Linux specifically configured for the
needs of blind and partially sighted users.10 Vinux includes the Orca screen reader, which
provides verbalizations of user interface elements.11 The accessibility of the Gnome desktop is
adequate and she is able to operate and use the system moderately efficiently. She has a Focus 40
Blue Braille display, but did not find it useful for this course.

The first choice that needed to be made was what programming environments to use. In previous
courses, she had used VIM, which is moderately accessible. But, this course requires
management of much larger projects including many classes and functions, a task more suited to
an integrated development environment. There are a variety of integrated development
environments available for Linux that have different degrees of accessibility. The course utilizes
NetBeans as the standard IDE and there is variation of NetBeans called Sodbeans that provides
some accessibility.5 Sodbeans was created primarily as a vehicle for using the Quorum
programming language, a computer language specifically designed to introduce blind students to
programming. Sodbeans extends NetBeans with spoken output in the editor and many of the
program management components. It is not a complete accessibility solution, as will be

discussed, but it did enable management, editing, and building of larger projects and was
compatible with projects other students created in the course. There was an issue that debugging
in Sodbeans is not accessible, as will be discussed in Section 4.4.

4.2 Visual Diagramming

The course teaches program design using Unified Modeling Language (UML) diagrams.
Specifically, the class, object, and state diagrams are covered and students are expected to
provide designs in all three. Much of the course material includes UML diagrams to convey
program structure. An example UML class diagram from the course is shown in Figure 1. UML
class diagrams convey the attributes and operations for a class, inheritance and nesting
relationships, and the associations between classes. They are a visual way of representing the
structure of an object-oriented system.

Figure 1 - Example UML Class Diagram

Of course, she could not see a UML diagram. Therefore, there were several major problems that
had to be overcome: a) helping her to understand what the diagrams normally convey visually, so
she can understand what the diagrams teach about program structure, b) providing a way to
represent a UML diagram that she could both read and produce, and c) providing a way for her
to participate in the diagram assignments and, in particular, the peer review process.

The natural idea for conveying UML diagrams was to convert them to raised-dot diagrams,
where the structure is indicated by raised dots on paper and the textual elements are indicated in
Braille. RCPD has a Tiger Braille printer capable of converting graphics to raised dot and Braille
diagrams and did convert several diagrams.12 However, this was not an effective approach for
several reasons. The printer is not able to read the diagrams produced by Visual Paradigm. So,
the diagrams had to be manually reproduced by a sighted user in a format acceptable to the
printer. Since Braille letters are nominally 10mm tall and 6.2mm wide, they are considerably
larger than normal text. The widest line in Figure 1 is 30 characters wide, or 18.6cm wide.

Maintaining scale on the diagram would require a diagram 60cm wide, considerably larger than
the Braille printer could accommodate. And, this was a relatively small class diagram with only
four classes. Later diagrams in the course included as many as 18 classes. The solution used by
RCPD was to present the diagram as blocks with a key in each block and a separate page that
listed the components of the block. When combined with roles and multiplicities on edges, the
contents of the diagram was effectively scattered over many pages and became very difficult to
comprehend. She was not able to gain much understanding of the diagrams from the raised-dot
representations.

Attempts to verbally describe the structure of a UML diagram were not effective. Conveying
physical relationships among graphical elements verbally is difficult to do and there was no
common frame of reference.

A solution that worked reasonably well for conveying the concept of the diagrams and their
meaning was to create a way that she could physically feel and manipulate a diagram. Figure 2
illustrates the solution we utilized. A cork bulletin board was placed on a desktop. Post-it notes
were created to represent classes. The elements of the class were added to the Post-it notes using
a slate and stylus (portable Braille embosser). This made it possible for her to feel the relative
placement of the classes in the space.

Figure 2 - Physical representation of UML diagrams

Regular push-pins were inserted into the board on the edges of classes. The edges between
classes could then be represented by either wire or rubber bands. Wire allowed the instructor to
create links that reflected those on the drawing, with bends and a single, sturdy line. Rubber
bands allowed the student to modify the diagram herself. Roles were indicated on associations
using smaller Post-it notes, also with Braille.

A set of foam symbols was found at a local craft store that included several symbols close to the
UML symbols used on edges. Figure 3 shows some of these symbols and their corresponding
UML element. The zero, one, and star symbols represented the most common multiplicities.
Inheritance was indicated using a triangle. Composition was indicated with the two triangles that
formed the closed diamond structure.

Figure 3 - Foam UML symbols on push pins

This approach had the advantage that she could not only comprehend a diagram that had been
made through tactile manipulation, she could create diagrams herself. The pins were easy to
manipulate and a rubber band created associations or generalizations. The approach was used for
both class and object diagrams in the course.

The semester following completion of the object-oriented course, Jordyn enrolled in the data
structures course taught by another instructor. She experienced a similar difficulty understanding
the concept of trees and graphs. Again, the bulletin-board approach provided invaluable for
helping her to understand the meaning of those structures.

For assignments and presentation of content after she reached an understanding of the diagram
structure, we devised a textual representation of the diagrams. The syntax consisted of the word
“class” and the class name and any inheritance or nesting, followed by the attributes and
operations. Associations where then listed as “association”, “aggregation”, or “composition”
followed by the first class, role, and multiplicity, then the second class, role, and multiplicity.
Italics, which is used to indicate abstract classes and operations, is indicated using slashes. As an
example, a subset of the diagram in Figure 1 would be:

class Farm

DisplayInventory()

AddAnimal(animal : Animal)

CountObnoxiousAnimals() : int

class /Animal/

/DisplayAnimal()/

/IsObnoxious() : bool/

association Farm farm 1 Animal inventory *

A similar format was devised for object and state diagrams. All diagrams in the course prior to
the introduction of Audible Browser were translated into this format. Her solutions to the design
assignments were translated to visual diagrams by a volunteer, who also translated other student
submissions assigned for review to the textual format. This format was also used for the exams.

Late in the semester, an experimental program, Audible Browser, for navigating UML diagrams
audibly was devised. Audible Browser is discussed in its own section.

4.3 Visual and GUI Assignments

The course uses a group of structured assignments called "Step Assignments" consisting of
tutorials, code reading, and individual work. These lead to group assignments. These
assignments are GUI-based, using the wxWidgets interface library, and highly visual in nature,
building programs such as an aquarium simulator, animation system, and elevator simulator.

The earliest solution for this problem was for her to work with a sighted student who could serve
as eyes on the project and use the mouse for manipulations. This was a less than ideal solution,
requiring coordination of schedules and limiting the time she could work on the project.
Providing an alternative assignment was not a good solution, since the Step assignments are
large, carefully designed to exercise the elements of the course, and are based on a combination
of code reading in a larger design and problem solving. So, we began to examine how we could
make it possible for her to complete the assignments and test the functionality of an interactive
GUI application without being able to see the screen.

Over several iterations, I created CSpeech, a drop-in component she could easily add to an
assignment. CSpeech is being made available as an open-source component
(http://metlab.cse.msu.edu/blind.php). CSpeech made it possible for her to add speech to an
application, adding commands that worked like simple cout statements. CSpeech uses the espeak
library for voice synthesis. Once added to the application, she could make the program speak at
any point using a command like this:

speak << “The current position is ” << x << “, ” << y << flush;

The class worked like cout with additional functions to support output of wxWidgets types like
wxSize and wxRect. The component also supports output of tone sequences using this syntax:

speak.Tone(0.15, 1000, 0.5);

This statement plays a 1000Hz tone for 0.5 seconds at an amplitude of 0.15. Tones provide a
sound cue that is faster than speech and can convey an additional variable through variations in
pitch.

CSpeech installs an accessible menu Speech when it is used. The menu includes options to list
the current windows on the screen including child windows, speak the window the mouse is
hovering over, and speak the x,y location in a window that the mouse is hovering over. It also
includes a command to empty and flush the current speech queue, a menu option affectionately
referred to as Shut Up. All of the menu options are available through accelerator keys. Most
blind computer users are very experienced in the use of keystrokes for menu access and tabbing
through fields in dialog boxes.

Whereas a conventional GUI application will draw the screen. Jordyn would add statements to
speak the status of the screen. For the aquarium simulation, the program would speak the
location and type of the fish on the screen. A modification of the mouse move event handler
allowed the program to speak when the mouse hovered over a fish, so she could grab it and move
it. It did require a search behavior, but speaking the mouse location did help in the process. She
was able to successfully complete the assignment.

Figure 4 - Animated character step assignment

A later assignment, illustrated in Figure 4 included an articulated animated character, where
students create a timeline and create keyframe animation for the rotations and positions of joints.
This was more problematic to speak, since there are a larger number of components in a
character. For this task, we used tones to play the current angle or position. Each redraw resulted
in a tonal sequence. Animation operation was indicated by changes in pitch. Some modifications
of the assignments were made for accessibility. Manipulating the timeline is normally done using
the mouse. She completed the same activity using keyboard commands.

A common problem was a cacophony of voices. The speech generation from CSpeech is
independent of Orca, the screen reader. Speech in Sodbeans is also independent. So, it was not
uncommon that the systems would attempt to speak simultaneously. A common solution was to
add a short delay using speak.Delay(1.0) to allow Orca to complete reading a window name. The
ability to cancel the current speech in both systems was found to be very important.

Surprisingly enough, the accessibility features in Linux do not make it easy to just send a string
of text to Orca to speak. The accessibility libraries, such as AT-SPI,13 are designed to allow the
screen reader to access text in on-screen controls. It is a pull model where screen readers request
accessibility information. There is also no reasonable means to determine the duration of an
utterance or intersperse other audible content with the speech.

4.4 Debugging

A significant problem was debugging. While Sodbeans has a debugger specifically for the
Quorum language, they did not extend the program to support debugging of C++ or Java
applications, so those parts of the user interface remained inaccessible. The solution was to use
GDB directly from the command line. While the interface is more cumbersome, it is accessible,
since it is all text. It is sometimes excessively verbose, dumping considerably more information
than necessary at the time. Sighted users can easily scan over these dumps, but a blind user has to
sit through considerable reading.

A problem with using gdb from the command line was that a GUI application seizes focus when
it starts, and the screen readers only read content from a screen that currently has focus. This was
particularly a problem when the program hit a breakpoint or segfaulted. The focus either
remained on the program or would transfer to Sodbeans or some other program. Consequently,
the gdb output of the breakpoint or fault would not be spoken by the screen reader. The effect
often was that the program failed silently.

A solution to this problem was to add this content to the .gdbinit file:

python

import os

def stop_handler (event):

os.system("espeak gdb")

gdb.events.stop.connect (stop_handler)

Whenever gdb gained control, the stop_handler function would run. That function used espeak to
say “gdb.”, providing an audible indication that gdb had gained control. The student could then
cycle focus to the terminal window hosting gdb.

5 Audible Browser

Comprehending the physical layout of UML class and state diagrams can be very difficult if you
cannot see them. The cork board layout provided a means to convey a diagram and for Jordyn to
learn to construct a diagram. However, it is too cumbersome to convey all of the examples in the
course and problems on exams. The textual representation does convey the essence of the
diagrams, but is not easy to scan.

Eye tracking studies using UML diagrams have shown that the eye predominantly moves among
the nodes of the diagram (classes, objects, or states), fixating on nodes.14 There are additional
fixations on the ends of the links (associations, transitions, and generalization, for example).
Users comprehend UML diagrams by examining the major items and the relationships between
them. This makes a textual representation less effective, since it sequentially presents things like
classes in an arbitrary order. While it may be possible to choose a better order, it is not going to
be easy for a user to traverse paths through a class or state diagram in this way.

There have been attempts to provide audible representations of drawings. Microsoft’s
InkAnalysis attempts to understand an arbitrary diagram and allow a user to navigate between
items quickly15. Others have used tactile interfaces to support feeling graphics, but these require
specialized hardware. However, the problem for UML diagrams is not recognizing that there are
rectangles, but recognizing that there are classes or states and connections among them and being
able to rapidly follow the connections so as to comprehend the structure or sequencing.

As an experiment, we created Audible Browser. A full description of Audible Browser is the
subject of a future paper. We summarize the basic functionality here. Audible Browser will be
made available as an Open Source project in the near future.

Audible Browser reads XMI 2.1 files and currently supports Class and State diagrams. We
specifically are using diagrams produced by Visual Paradigm. This discussion will focus on class
diagrams. The presentation of state diagrams is similar. The program presents the nodes in a
diagram in a tab group. A tab group is a set of common items that can be read using the up and
down arrow keys. The tab groups for a class are the name, attributes, operations, and
associations. The name tab group initially speaks the class name and any inheritance or nesting.
This is a summary of the class. The arrow keys allow the user to traverse through a list that
includes any class this class is nested in, any classes nested in this class, classes this class inherits

and classes that inherit this class. Hitting return on any of these lines allows the user to move
directly to the associated class.

The next tab stop presents the class attributes. These are spoken in the same form they appear in
a normal UML class diagram. For example, the attribute x: int=0 is spoken as “x colon int
initially zero”. The left and right arrow keys allow the user to move from letter to letter, speaking
the letters. This prevents ambiguity if the speech generation is not clear.

The next tab group allows the user to examine the operations of the class. The function
func(x:int, y:int) : string is read in the form: “func parameters x colon int y colon int returns
string”. As before, the left and right arrow keys read out the letters of the actual UML
representation one at a time.

The final tab group lists associations, aggregations, and compositions. In each case, the roles and
multiplicities are read with the association. As an example: “association diagram 1 to state 0 dot
dot asterisk”.

To convey the structure of a diagram, Audible Browser plays tones for each node. These tones
are referred to as stars and are in a constellation. Each star is presented as a tone. The left-right
placement represents the x position in the diagram and the pitch represents the y position. 3D
audio is only effective for left-right placement of content. 3D audio is not effective for vertical
placement for general users. Nodes that are higher on the page are presented with a higher pitch.
Mansur, Blattner, and Joy found that humans have a natural tendency to interpret higher
frequencies as vertically higher in space.16 The name of the node can also be optionally spoken
when the constellation is presented. This provides a way to quickly convey the relative
placement of the nodes around the user.

The user can navigate to other nodes using the mouse. All mouse movement is relative to when
the movement begins, so there is no absolute placement and the mouse does not correspond to
screen locations. Technically, the mouse is re-centered when it is released, so there is always
space for movement in all directions and it cannot be clicked outside the window and
accidentally inflict a context change. When moving, the left-right placement changes to tell the
user when items move to the left and right. The pitch for items stays the same. A background
tone is played as the constellation is continuously presented when moving. The tone provides a
reference of the current y location and varies as the user moves up and down. Humans are very
poor at recognizing absolute pitches, so pitch is not a good representation of absolute position.
However, humans are good at recognizing differences if pitch, so the pitch is a powerful tool for
representing relative placement.17 Traversing to a node consists of moving it so the sound is
centered left and right and the motion tone matches the pitch. As nodes are neared, this status is
spoken as well. When the mouse button is released, Audible Browser snaps to the nearest node.

6 Conclusion

Making an object-oriented programming class accessible has been an adventure for both the
student and instructor and that cooperation was critical during the semester. We have been
surprised as how limited the available tools are and have had to quickly improvise solutions for
the problems as they arose. This paper is our attempt to convey the solutions we discovered.
There are many talented individuals who have great potential in the field of Computer Science,
but are discouraged as curricula become less, rather than more, accessible. Hopefully, others will
be able to benefit from some of what we have learned and also contribute ideas and we can
increase the participation of blind students in the field.

7 References

[1] "Annual Report 2012: Distribution of Eligible Students Based on the Federal Quota Census of January 3, 2011
(Fiscal Year 2012)," American Printing House for the Blind, 2012.

[2] J. P. Bigham, M. B. Aller, J. T. Brudvik, J. O. Leung, L. A. Yazzolino and R. E. Ladner, "Inspiring blind high
school students to pursue computer science with instant messaging chatbots," in SIGCSE '08 Proceedings of
the 39th SIGCSE technical symposium on Computer science education, New York, NY, 2008.

[3] A. Stefik, C. Hundhausen and D. Smith, "On the Design of an Educational Infrastructure for the Blind and
Visually Impaired in Computer Science," in Proceedings of the 42nd ACM technical symposium on Computer
science education, 2011., New York, NY, 2011.

[4] J. Sanchez and F. Aguayo, "Listen what I do: Blind Learners Programming Through Audio," in Memorias
TISE 2004, 2004.

[5] "Sodbeans Website," [Online]. Available: http://sodbeans.sourceforge.net/. [Accessed 2013].

[6] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley Professional, 1994.

[7] "wxWidgets," [Online]. Available: http://www.wxwidgets.org/. [Accessed 2013].

[8] Visual Paradigm, Inc., "UML Modeling Tool with ERD and Code Generation," [Online]. Available:
http://www.visual-paradigm.com/product/?favor=vpuml. [Accessed 2013].

[9] "Vim (text editor)," [Online]. Available: http://en.wikipedia.org/wiki/Vim_(text_editor). [Accessed 2013].

[10] "The Vinux Project," [Online]. Available: http://vinuxproject.org/. [Accessed 2013].

[11] "Orca Screen Reader," [Online]. Available: https://wiki.gnome.org/Orca. [Accessed 2013].

[12] "Tiger Elite200 Braille Printer," [Online]. Available: http://www.viewplus.com/products/braille-printers/elite-
braille-printers/.

[13] "Accessibility | The Linux Foundation," [Online]. Available:
http://www.linuxfoundation.org/collaborate/workgroups/accessibility. [Accessed 2013].

[14] S. Yusuf, H. Kagdi and J. I. Maletic, "Assessing the Comprehension of UML Class Diagrams via Eye
Tracking," in 15th IEEE International Conference on Program Comprehension, 2007. ICPC '07, Banff,
Alberta, BC, 2007.

[15] D. Schwab, "Non-Visual Diagram Navigation Using Microsoft’s InkAnalysis Tool," Honor's Thesis, Winona
State University, Department of Computer Science, 2006.

[16] D. L. Mansur, M. Blattner and K. Joy, "Sound-Graphs: A numerical data analysis," Journal of Medical
Systems, vol. 9, pp. 163-174, 1985.

[17] S. Brewster, "Nonspeech auditory output," in The human-computer interaction handbook, Hillsdale, NJ, USA ,
L. Erlbaum Associates Inc., 2002, pp. 220-239.

